
A symmetry in the finite-temperature Casimir effect

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L793

(http://iopscience.iop.org/0305-4470/21/16/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) L793-L796. Printed in the UK 

LETTER TO THE EDITOR 

A symmetry in the finite-temperature Casimir effect 
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t CERN-TH, CH-1211 Genkve 23, Switzerland 
$ Department of Physics, University of Illinois at Urbana-Champaign, 11 10 West Green 
Street, Urbana, IL 61801, USA 

Received 1 February 1988 

Abstract. Vacuum fluctuations at finite temperature between two plane walls give rise to 
a Casimir energy which has a simple symmetry between high and low temperatures. This 
symmetry is most easily understood in a derivation based on functional methods using 
dimensional regularisation and generalised zeta functions. 

The Casimir effect is due to the vacuum fluctuations of quantum fields. Each mode 
of a bosonic field contributes +ihw to the vacuum energy while a fermionic mode 
contributes -$hw. Casimir [ l ]  was able to sum these mode contributions for an 
electromagnetic field between two parallel plates with separation L at zero temperature. 
He found an attractive force given by the negative pressure P = -.rr2/240L4 in units 
where h = c = 1. 

More recently, Johnson [2] calculated the corresponding effect due to a massless 
Dirac field confined between two parallel plates by the MIT boundary condition. The 
pressure is now found to be P = -7r2/960L4 which is of the electromagnetic pressure. 
This ratio is exactly the same as one has between the corresponding two pressures at 
very high temperatures where the presence of the boundaries is no longer felt and the 
vacuum fluctuations are just free black-body radiation. 

The equality of the ratios of the fermionic and bosonic Casimir forces at very low 
and high temperatures, T, is no accident. It comes about due to a symmetry in the 
free energy density F(  T, L )  of a massless field between two parallel plates. For the 
electromagnetic field it was first noticed by Brown and Maclay [3]. They showed that 
the dimensionless function f (5)  = L3F(  T, L ) ,  where 5 =  LT is also dimensionless in 
units where Boltzmann’s constant k = 1, satisfies 

f(5) = (25I4f(1/45) (1 )  

which is a symmetry between high and low temperatures. Actually, the function f(f) 
as defined by Brown and Maclay [3] is only a part of the free energy, but the complete 
free energy also has this symmetry. Recently Gundersen and Ravndal [4] noticed that 
the same symmetry also obtains for the scaled free energy of a fermionic field between 
parallel MIT plates. 

We clarify these results by giving a simple derivation using functional methods 
which are ideally suited for this problem. In this formulation the origin of the symmetry 
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between the high- and low-temperature results is manifest and the observed ratio $ 
between the fermionic and bosonic Casimir forces at both very low and very high 
temperatures is thereby explained. 

The free energy for a massless field at temperature T = p- ’  is obtained by evaluating 
the partition function on a manifold where the time direction is Euclideanised and 
compactified to a circle (SI) of size p. In addition, the Casimir geometry corresponds 
to compactifying one of the spatial directions to size L, the distance between the 
parallel plates. 

Bose fields are periodic on Si and satisfy spatial boundary conditions of the Dirichlet 
or Neumann type, depending on the physics of the system being investigated. Fermi 
fields, on the other hand, are antiperiodic on SI and are usually constrained spatially 
by the MIT boundary conditions. 

Consider now a free massless Dirac field, whose partition function 

is Gaussian and therefore evaluates in four dimensions to [ 5 ]  

2 = de t (0 )  = detlI2(0’). (3) 

PF = -iTr In(-D’). (4) 

Thus the effective potential, or free energy density, is simply given by 

The trace is over all the non-zero eigenvalues of the differential operator acting on 
our partially compactified manifold where the spectrum is semicontinuous. With 
essentially antiperiodic boundary conditions in both compactified directions the dis- 
crete eigenvalues run over the half-integers [6] and we have (in the absence of any 
chiral angle in the MIT boundary condition) that 

m 

ln[k$+ ( ~ / 2 L ) ~ ( 2 m  + l ) ’ + ( ~ / p ) ’ ( 2 n  + l)’] 
n,m = -m 

where kT is the momentum parallel to the plates. It is obvious that the spectrum, and 
therefore the free energy F, reflects the symmetry of the spacetime manifold under 
investigation. By inspection, we see that it is invariant under the interchange of 2 L  
and p. This is essentially the symmetry we want to elucidate. 

To obtain the functional form of F we employ the useful result [7] 

When applied to ( 5 )  after analytically continuing the number of transverse 
dimensions away from 2, this gives 

with 
m 

S(X) = 1 [ ( 2 m  + 1 ) ~ + x ’ ( 2 n  + I ) ~ ] ~ ’ ’ .  
n,m = -m 
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This double sum can be written in terms of Epstein zeta functions which, for 
sufficiently large (real) argument s, is given by the series expansion [8]: 

where the sum extends over all positive and negative integers except m = n = 0. We 
can then write 

S(x)=(1+2d)Z2(l,X; -d/2)-2,(1,2x; -d/2)-22(2,x; -d/2). (10) 

The analytic continuation of (7) to its physical value is now easily done by using 
the reflection formula [8] satisfied by the zeta function: 

r ( s ) ~ - " Z ~ ( a ,  6 ;  s) = (ab)-'r(l -s)7rS-'Z2(a-',  b-';  1 - s ) .  ( 1 1 )  

Combining ( 1 1 )  with (7) and ( lo) ,  the dangerous gamma functions drop out and 
we find in the physical limit (d + 2) the final result for the scaled free energy f(5) = 
L3F( T, L): 

where 

C(X) =$2,(1, x; 2) -22,(1,2x; 2) - 2 2 3 2 ,  x; 2) (13) 

is a finite function which can be written as 
m 

C(x)=  C' (-l)"'"["+(xn)']-' 
n,m=-m 

where the point m = n = 0 is again excluded from the summation. 
For an electromagnetic field trapped between reflecting plates a result almost 

identical to (12) is known [3]. The only difference is that the doubly periodic boundary 
conditions appropriate in this case avoid the alternating sign in the representation of 
C(25) given by (14). It is therefore simply replaced by the Epstein zeta function 
Z2(1, 25; 2). This will also give the free energy of two massless scalar fields between 
the plates, satisfying boundary conditions of, respectively, the Dirichlet and Neumann 

We see that, if we hold L fixed, ( 1 )  tells us that the free energy of these massless 
fields between parallel plates at low temperature is given by the free energy at high 
temperature. Hence the free energy at T = 0, which is the Casimir energy, is completely 
determined by the Stefan-Boltzmann law for black-body radiation. Since it is well 
known that the free energy of hot electrons differs by from the free energy of photons 
at the same temperature, and ( 1 )  is satisfied for both species of particles, the same 
ratio is also valid for the vacuum energies of these fields between the plates at zero 
temperature. 

type ~91. 
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